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ABSTRACT

The berries of bilberry and black currant are rich source of anthocyanins, which are
thought to have favorable effects on non-alcoholic steatohepatitis (NASH). This study
was designed to examine whether purified anthocyanins from bilberry and black
currant are able to limit the disorders related to NASH induced by a
methionine-choline-deficient (MCD) diet in mice. The results showed that treatment
with anthocyanins not only alleviated inflammation, oxidative stress, steatosis and
even fibrosis, but also improved the depletion of mitochondrial content and damage of
mitochondrial biogenesis and electron transfer chain developed concomitantly in the
liver of mice fed the MCD diet. Furthermore, anthocyanins treatment promoted
activation of AMP-activated protein kinase (AMPK) and expression of peroxisome
proliferator-activated receptor-gamma coactivator-la (PGC-1a). These data provide
evidence that anthocyanins possess significant protective effects against NASH and
mitochondrial defects in response to a MCD diet, with mechanism maybe through
affecting the AMPK/PGC-1a signaling pathways.

KEYWORDS: AMP-activated protein kinase; anthocyanin;, mitochondrial

dysfunction; nonalcoholic fatty liver disease; oxidative stress
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic
liver disease, largely due to obesity epidemic.’ It encompasses a spectrum of liver
damage ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), an
advanced stage of disease comprising progressive steatosis, lobular inflammation,
balloon degeneration and even fibrosis.” The pathogenesis responsible for the
development and progression of NASH is comprehensive and remains yet to be fully
elucidated. Due to this, available treatments remain unsatisfactory.

Hepatocytes are commonly enriched in  mitochondria  (~1000-2000
mitochondria/hepatocyte), signifying their critical roles within hepatocytes, such as
the primary site for energy production and -oxidation of fatty acids. Previous studies
have shown that abnormal morphological changes in mitochondria and reduced
mitochondrial DNA (mtDNA) copy number are observed in human subjects and
animal models with NASH.** In addition, significantly decreased activity of the
hepatic mitochondrial respiratory chain (MRC), particularly complex I and IV, was
shown in NASH liver samples compared to controls.”® Moreover, recent evidence has
demonstrated impairment of mitochondrial B-oxidation in humans and animals with
NASH.”® These studies provide strong evidence to support the possibility that
NAFLD might be a mitochondrial disease. They also support seeking therapies that
improve mitochondrial function as a useful strategy for preventing NASH and its
complications.

Interestingly, several polyphenolic compounds, such as curcumin,’ quercetin,lo
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anthocyanins (ACNs)'" and green tea catechins'’, have been demonstrated to have
beneficial effects in NAFLD. Among them, ACNs are of great interest due to their
abundance in a wide variety of plant foods and the fact that considerable amounts
could be ingested from our plant-based daily diets. Existing in vitro data suggest that
ACNs exert anti-steatosis effects in hepatocytes by inhibiting lipogenesis and/or
promoting fatty acid oxidation."*"® Mirroring the results obtained in vitro, ample
evidence from animal models of NAFLD demonstrates that ACNs diminish hepatic
lipid accumulation and inflammation.'®  Furthermore, ACNs are thought to promote
antioxidant activity and eventually contribute to an overall positive gain in liver
function.'”'"* Despite realizing these benefits, an understanding of the protective role
of ACNs and the underlying mechanism of action in the progression of NASH
remains unknown and requires further investigation in vivo.

Considering the potential capability of ACNs in NASH and the vital role of
mitochondrial dysfunction in the progression of NASH, we set out to determine the
influence of purified ACNs from bilberry and black currant on hepatic steatohepatitis
and fibrosis as well as mitochondrial content and function in a
methionine-choline-deficient (MCD) diet murine model of NASH. The influence of
ACNs on related signaling pathways was also investigated.

MATERIALS AND METHODS

Purified Anthocyanins. Purified ACNs were kindly provided by Polyphenol AS

(Sandnes, Norway). As mentioned in our previous study,'’ the purified ACNs product

is consisted of 17 different natural ACNs from bilberry (Vaccinium myrtillus) and
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black currant (Ribes nigrum). Cyanidin 3-O-B-glucoside and delphinidin
3-O-B-glucoside are major components of the ACNs supplement. Detailed
components and contents are listed in Supporting Information Table 1.

Reagents and Antibodies. Reagents for immunohistochemistry and
immunofluorescence, such as serum blocking solution, hydrogen peroxide and
diaminobenzidine (DAB), were obtained from Zhongshan Jingiao Biotechnology Co
(Beijing,  China).  Anti-AMP-activated  protein  kinase = (AMPK) and
anti-phosphorylated AMP-activated protein kinase (p-AMPK) antibodies were
purchased from Cell Signaling Technology Inc. (Danvers, MA, USA). Antibodies for
cabamoyl phosphate synthase 1 (CPS-1), alpha smooth muscle actin (a-SMA),
peroxisome proliferator-activated receptor-gamma  coactivator-1  (PGC-1p),
nicotinamide adenine dinucleotide dehydrogenase (Complex I), and cytochrome c
oxidase (Complex IV) were purchased from Abcam (Cambridge, UK). Antibodies for
peroxisome proliferator-activated receptor-gamma  coactivator-la.  (PPAR-a),
peroxisome proliferator-activated receptor-1a (PGC-1a), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and all secondary antibodies were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Fluorescent probe dihydroethidium
(DHE) was purchased from Calbiochem (San Diego, CA, USA). All other reagents
and kits were obtained from Sigma-Aldrich (St. Louis, MO, USA) and Invitrogen
(Carlsbad, CA, USA) unless otherwise noted.

Animals and Diets. All animal procedures were approved by the Animal Care and

Protection Committee of Sun Yat-Sen University (2013-10). Six-week-old male
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C57BL/6J mice purchased from the Experimental Animal Center of Sun Yat-Sen
University (Guangzhou, China), were housed in standard cages within a room with a
constant temperature and humidity, under a 12-h light/dark cycle, with free access to
food and water. After two-week adaptation, all mice were body-weight matched and
randomly divided into three groups (n = 8 per group): (1) control group, mice were
fed a control chow diet; (2) MCD group, mice were fed with a diet deficient in
methionine and choline; (3) MCD + ACNs group, mice were fed with the MCD diet
with addition of 1 g purified ACNs per kilogram food. Both the control chow diet
and MCD diet were purchased from Research Diets Inc. (New Brunswick, NJ, USA).
The control diet was identical to the MCD diet but supplemented with DL-methionine
(3 g/kg) and choline chloride (2 g/kg). Food intake was measured every other day and
body weight was measured weekly.

Biochemical Analyses. At the end of the experiment, all mice were euthanized
with sodium pentobarbital (50 mg/kg body weight) and sacrificed after overnight
starvation. The serum and liver samples of each mouse were collected and stored at
-80°C for further analysis.

Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were
detected using commercial kits from Jiancheng Bioengineering Institute (Nanjing,
China) according to the manufacturer’s instructions. Serum triglyceride (TG), total
cholesterol (TC), and hepatic TG/TC contents were determined using commercial
detection kits (Applygen Technologies Inc., Beijing, China) according to

manufacturer’s protocols.
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Histological Assessment. The liver samples were fixed in 10% phosphate-buffered
formalin, embedded in paraffin, cut in 5 pm thickness, and applied to slides. The
sections were stained with hematoxylin and eosin (H&E) and Sirius Red for
histological analysis (NAFLD activity scoring (NAS) and collagen) under light
microscopy (Leica, Bensheim, Germany). The Pathology Committee of the NASH
Clinical Research Network®® provided guidance and recommendations for the NAS
study by semi-quantitatively evaluating the following histological features: steatosis
(< 5% =0; 5-33% = 1; 33—-66% = 2; >66% = 3); lobular inflammation (none = 0; < 2
foci = 1; 2—4 foci = 2; >4 foci = 3); and hepatocellular ballooning (none = 0; few = 1;
prominent = 2). All features were scored blindly based on at least 5 samples per group
and 10 fields of vision in each sample. Fresh liver tissue were embedded in Tissue Tek
OCT and rapidly frozen in liquid nitrogen and then stored at -80°C for preparation of
frozen sections (5 pm), which were used for staining with Oil Red O and
immunofluorescence staining.

Immunohistochemistry and Immunofluorescence. The procedures for
immunohistochemistry and immunofluorescence assays were performed as previously
described.”! Briefly, slides were incubated in serum blocking solution for 30 min and
incubated overnight with either a-SMA or CPS-1 primary antibody. Then
HRP-labeled or  fluorescent secondary  antibodies were wused for
immunohistochemistry (a-SMA) and immunofluorescence (CPS-1) analysis,
respectively. DAB was applied for immunohistochemistry and the samples were

observed under light microscopy (Leica, Bensheim, Germany). DAPI (Roche,
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Germany) was utilized for immunofluorescence nuclear staining and the samples were
observed under an Inverted Fluorescence Microscopy (Nikon Eclipse Ti-E, Tokyo,
Japan). The fluorescent intensity was analyzed using ImageJ software (Research
Services Branch of the NIH, Bethesda, MD).

Western Blot. Liver tissues were homogenized and 30 pg of total protein lysate
were loaded onto 8%~15% SDS polyacrylamide gels. After 90 min of electrophoresis,
the proteins were transferred onto a polyvinylidene difluoride membrane in ice for

1~2 h. The membrane was blocked with 5% (w/v) bovine serum albumin dissolved in

trihydroxymethyl aminomethane buffer salt containing 0.05% (v/v) Tween-20 (TBST).

The membrane was then incubated at 4°C overnight with primary antibodies for
AMPK, p-AMPK, CPS-1, PGC-1a, PGC-1B, PPAR-a, Complex I or Complex IV,
followed by incubation with secondary antibodies conjugated with horseradish
peroxidase for 2 h at room temperature. Signals were detected by enhanced
chemiluminescence reagent (Thermo Fisher Scientific, Waltham, MA, USA). GAPDH
was used for normalization. The density of the specific bands was quantified using
ImagelJ software.

Mitochondrial DNA Quantification. Total DNA was extracted from livers using a
DNeasy Blood & Tissue Kit (Qiagen, Dusseldorf, Germany) and real-time PCR was
performed using gene-specific primers amplifying mitochondrial DNA (mtDNA) and
nuclear DNA (nDNA). The relative values of mtDNA content and nDNA content were
used to assess mitochondrial copy numbers. The primer sequences are listed in

Supporting Information Table 2.
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RNA Extraction and Quantitative RT-PCR. Total RNA (1pg) was extracted from
liver tissues using Trizol reagent and transcribed into cDNA using the PrimeScript RT
reagent kit (TaKaRa, Tokyo, Japan) according to the manufacturer’s recommendations.
Quantitative PCR was performed using a real-time PCR system (Applied Biosystems,
Foster City, CA, USA), and reactions were performed using SYBR Green Master Mix
(TaKaRa, Tokyo, Japan) with gene-specific primers. Each sample was normalized to
B-actin and the fold change in expression of each target gene relative to B-actin was

assessed via the comparative CT (24T

) method. Primer sequences are listed in
Supporting Information Table 3.

Detection of Hepatic Oxidative Stress. The total reactive oxygen species (ROS)
levels in the liver tissues were detected using the fluorescent probe DHE. Briefly,
frozen liver sections were incubated in DHE (10 puM) for 30 min in a dark and
humidified chamber at 37°C. DHE is oxidized by superoxide to ethidium bromide,
bands to the DNA and emits red fluorescence,*” which was detected using an Inverted
Fluorescence Microscopy. In addition, liver tissue homogenates were prepared to
measure hepatic malondialdehyde (MDA) by following the commercial kit’s
instructions (Beyotime, Shanghai, China). The MDA concentrations were normalized
by protein contents.

Statistical Analysis. All results were expressed as mean + standard deviation (SD)
and statistically analyzed with SPSS 16.0 for Windows (SPSS Inc., Chicago, IL,

USA). Comparisons between all groups were evaluated using one-way analysis of

variance (ANOVA). Differences were considered significant at P < 0.05.
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RESULTS

Effects of ACNs on Animal Characteristics. As shown in Table 1, the initial body
weight amongst the 3 groups showed little deviation (P > 0.05). After 4 weeks, the
MCD mice with or without ACNs treatment displayed a significant reduction in body
weight (~ 50%). Moreover, one-fold increase in serum AST and more than ten-fold
increase in serum ALT were observed in mice fed the MCD diet. Though ACNs didn’t
attenuate the reduction of body weight induced by the MCD diet, their addition
effectively decreased serum ALT and AST levels (P < 0.05). No significant changes in
daily food intake among the 3 groups during the experimental period were observed
(data not shown).

Effects of ACNs on Lipid Accumulation. The histological features of Oil Red O
staining illustrated a massive accumulation of neutral lipid droplets within the
hepatocytes of MCD group, whereas only small lipid droplets were observed in mice
treated with ACNs (Figure 1A). Quantitative determination of hepatic TG content
further confirmed that a large quantity of TG accumulated in the livers of mice fed the
MCD diet, which was significantly decreased by ACNs supplementation (P < 0.05)
(Figure 1B). Conversely, the serum TG levels in both MCD diet group and MCD +
ACNs group declined sharply compared with the control group, while were slightly
up-regulated by ACNs though without significance compared with the MCD group
(P > 0.05) (Figure 1C). This interesting phenomenon probably was caused by hepatic
TG potentially releasing into serum. Similarly, accumulation of hepatic TC was
effectively alleviated by ACNs (P < 0.05) (Figure 1D). The serum TC levels in MCD

10
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+ ACNs group showed an increasing trend but no significant differences compared to
the MCD diet only group (Figure 1E).

Amelioration of Steatohepatitis by ACNs. The gross morphology of the livers in
the control group displayed red and smooth tissue surface. After 4 weeks feeding with
MCD diet, the gross morphology of livers appeared an obvious increase in tawny and
brittle appearance, which was improved greatly by ACNs treatment (Figure 2A). The
NAS calculation system was applied to semi-quantitatively evaluate the steatosis,
inflammation and ballooning. Indeed, the histological analysis of H&E staining
indicated significant microvesicular steatosis, inflammatory cell infiltration and
hepatocyte ballooning in MCD diet group. However, livers of the ACNs-treated group
exhibited only mild hepatic steatosis and effectively ameliorated inflammatory
infiltration with reduction by 50% in hepatocyte ballooning compared to the MCD
diet only group (Figure 2B-E).

Inhibition of Liver Fibrosis by ACNs. To assess the effect of ACNs on hepatic
fibrosis, we carried out a Sirius Red staining of collagen in liver sections. A
substantial increase in collagen deposition was observed in the MCD group compared
with the control group. However, an obvious decrease in the stained area percentage
was observed in the MCD + ACNSs group (Figure 3A). Activation of hepatic stellate
cells (HSCs), the major effectors in collagen production during hepatic fibrogenesis,
is another indicator of fibrogenesis. To further evaluate HSCs activation,
immunohistochemical staining of a-SMA was performed. As displayed in Figure 3B,
the data indicated that ACNs treatment reduced the expression of a-SMA, suggestive

11
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of inhibition of HSCs activation. Besides, both relative mRNA expression of collagen
I and a-SMA confirmed that ACNs played a suppressive effect on fibrosis in NASH
(Figure 3C-D).

Decrease of Oxidative Damage by ACNs. Mitochondria are the major sites for
ROS production. Quantitative evaluation of hepatic ROS is also an indicator of
mitochondrial impairment. In our present study, the 4-week MCD diet up-regulated
ROS levels of liver tissues by approximately 6-fold compared with the control diet
and we unearthed that ACNs were able to significantly subdue ROS production
induced by the MCD diet (Figure 4A-B). In addition, hepatic malondialdehyde (MDA)
content, a widely used marker of oxidative stress, was increased by nearly 4-fold in
the MCD group but only slightly increased in ACNs-treated mice (Figure 4C). The
results of hepatic ROS and MDA levels clarified that ACNs played a suppressive
effect on oxidative damage in NASH.

Attenuation of Reduced Mitochondrial Content and Function by ACNs. One of
the common mitochondrial defects observed in NASH is depletion of mitochondrial
DNA (mtDNA).* In our study, we first investigated the protective effect of ACNs on
mtDNA. As shown in Figure 5A, mtDNA indeed displayed an apparent decrease in
the MCD group, which was slightly improved through administration of ACNs (P <
0.05), though it was still lower than the number observed in the control group.
Moreover, CPS-1, a hepatic mitochondrial membrane specific marker and a reflection
of mitochondrial number and function in liver, declined in NASH but was
significantly up-regulated by treatment of ACNs (Figure 5B-D).

12
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Enhancement of Mitochondrial Biogenesis by ACNs. To investigate whether
ACNs are capable of increasing mitochondrial biogenesis, we determined the relative
mRNA  expression of peroxisome proliferator-activated receptor-gamma
coactivator-1la (PGC-1a) and B (PGC-1p), nuclear respiratory factor-1 (NRF-1) and 2
(NRF-2), and mitochondrial transcription factor A (Tfam) (pivotal regulators of
mitochondrial biogenesis). As displayed in Figure 6A and B, PGC-la dropped in
NASH (P < 0.05) but exhibited sharply increased expression after ACNs intervention,
whereas PGC-1f was unaffected by either MCD diet or ACNs treatment. In addition,
there was almost 50% reduction in PGC-1a-target genes NRF-1, NRF-2 and TFAM
following a MCD diet, while the reduction was effectively suppressed with treatment
of ACNs. Likewise, immunoblotting analysis revealed that ACNs reversed the
reduction of protein abundance of PGC-la induced by the MCD diet, while no
significant difference in PGC-1p expression was observed among the three groups
(Figure 6C). Together, these results indicate that ACNs may induce mitochondrial
biogenesis through PGC-1a pathway.

Our previous research has demonstrated activation of AMPK by ACNs in
hepatocytes,14 which could result in phosphorylation of the transcriptional coactivator
PGC-1a thus leading to increased mitochondrial biogenesis.”** Then, we determined
the protein levels of p-AMPK and total AMPK and discovered an over 50% decrease
in p-AMPK in the liver of NASH mice, which was rescued by ACNs with no change
of total AMPK (Figure 6C).

Amelioration of Mitochondrial Electron Transfer Chain (ETC) Defects by

13
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ACNs. Mitochondrial ETC is constituted of four respiratory complexes (Complex I to
IV).25 To confirm the alteration of mitochondrial ETC and effects of ACNs on it at a
functional level, the protein expression of two major sites of electron input into the
electron transport system (Complex I and IV) in total liver lysates was examined
(Figure 6D). The mice fed the MCD diet had mitochondrial ETC defects, as shown by
conspicuously diminished protein expression of mitochondrial Complexes I and V,
especially the Complexes [V (approximately 4-fold). As expected, dietary ACNs
intervention successfully intensified protein expression of mitochondrial Complexes I
and V, reflecting improvement of mitochondrial oxidative phosphorylation and
enhancement of mitochondrial biogenesis and function.

Improvement of Mitochondrial p-Oxidation by ACNs. Impairment of
mitochondrial oxidative phosphorylation is often followed by inhibition of
mitochondrial fatty acid B-oxidation. In the present study, we indeed discovered that
both protein and mRNA expression of peroxisome proliferator-activated receptor-a
(PPAR-a) were nearly halved in NASH but was successfully restored by ACNs
intervention (Figure 6C and E). PPAR-a is one of a superfamily of nuclear hormone
receptors and able to transcriptionally up-regulate nuclear genes encoding
mitochondrial fatty acid oxidation enzymes.”® We then determined gene expression
levels of carnitine palmitoyltransferase 1 (CPT-1) and medium chain acyl CoA
dehydrogenase (MCAD), two rate-limiting enzymes of fatty acids B-oxidation. As
illustrated in Figure 6E, relative mRNA expression of CPT-1 and MCAD dropped
significantly in NASH (P < 0.05), however, both were augmented with administration
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of ACNs. These were accompanied with no distinction of fatty acid synthesis (FAS)
between the groups. Thus, ACNs seemed to be able to stimulate hepatic lipid
oxidation, leading to reduction of TG accumulation within hepatocytes.
DISCUSSION

Previously, we and others have shown that ACNs have hepatoprotective activities in
obese and diabetic rodents.'®*’ In the present study, we demonstrated that purified
ACNs from bilberry and black currant were capable of ameliorating hepatic steatosis,
inflammation, oxidative stress as well as signs of fibrosis and improving depletion of
mitochondrial content and damage of mitochondrial biogenesis, ETC as well as
B-oxidation. To our knowledge, this work provides the first evidence that ACNs, the
soluble flavonoids, alleviate complications of NASH and improve degeneration of
mitochondrial function in mice fed a MCD diet.

Many researches certificate that abnormalities in the number and quality of
mitochondria are frequently observed in NASH and involved in its pathogenesis.
These mitochondrial abnormalities include ultrastructural lesions, depletion of
mtDNA, reduction of respiratory chain activity, impairment of mitochondrial
B-oxidation and induction of uncoupling and apoptosis.28 As expected, our MCD
diet-induced NASH model displayed a reduction in mitochondrial content, as well as
impairment of mitochondrial biogenesis, ETC activity and f-oxidation function.

In our study, we discovered that dietary supplement of ACNs could ameliorate the
depletion of mtDNA and decrease expression of CPS-1 (Figure 5). Mitochondrial
DNA represents mitochondrial self-replication and is involved in mitochondrial
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biogenesis.** It is also crucial for mitochondrial oxidative phosphorylation, encoding
thirteen MRC polypeptides that embed within complexes I, III, IV, and V, and further
for p-oxidation” CPS-1, a hepatic mitochondrial membrane-specific marker,
qualitatively reflects hepatic mitochondrial content and function in the liver and is a
comprehensive marker of mitochondrial damage.*® It could be concluded from our
work that dietary ACNs mitigate the depletion of mitochondrial content and
dysfunction in NASH.

Mitochondrial biogenesis plays a critical role in maintaining the dynamic
equilibrium of proliferation and degradation of mitochondria in hepatocytes.’’
Activation of mitochondrial biogenesis is mainly reflected by the activation of NRF-1
and NRF-2, which conversely regulates the expression of Tfam, a protein essential for
transcription, replication and maintenance of the mtDNA. In our study, the mRNA
expression of NRF-1, NRF-2 and Tfam was significantly decreased in mice fed the
MCD diet, indicating damage to mitochondrial biogenesis. This effect was evidently
ameliorated by administration of ACNs, especially with respect to NRF-2 and Tfam
(Figure 6B). These data suggest that ACNs stimulate mitochondrial biogenesis in
NASH.

As major sites for cellular respiration, mitochondria play a vital role in maintaining
energy metabolism and function of hepatocytes, which includes citric acid cycle and
oxidative phosphorylation process. The oxidative phosphorylation process of ETC is
located on inner membrane of mitochondrion and consisted of four large
trans-membrane protein complexes (mitochondrial respiratory Complex I, II, III and
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IV).?* Complex I and IV are two important and major protein complexes of electron
transfer chain among the four. Via determination of the two representative protein
complexes, we ascertained that ETC defects happened in mice fed the MCD diet
which, however, were visibly alleviated by ACNs administration (Figure 6D).

One of the most common hepatic cell injuries is the result of accumulation of
various lipids, which further contributes to development and progression of fatty liver.
The main mechanisms are as follows: increased fatty acid uptake and de novo hepatic
lipogenesis, decreased fatty acid P-oxidation and hepatic very low density
lipoprotein-triglyceride (VLDL) secretion. One of the mechanisms of NASH induced
by the MCD diet is decreased VLDL assembly and secretion, contributing to
disturbance in phosphatidylcholine synthesis that is caused by deficiencies in
methionine and choline.”” In our study, we also observed that this model was
accompanied by impairment of mitochondrial f-oxidation, manifested by decrease in
gene or protein expression of PPAR-a, CPT-1 and MCAD (Figure 6C and E), which
consequently cooperated with decreased VLDL to result in the reduction of lipid
clearance. Our data show that ACNs treatment significantly up-regulated protein
expression of PPAR-a and gene expression of PPAR-a, CPT-1 and MCAD (Figure
6E). PPAR-a is predominantly expressed in the liver where it transcriptionally
up-regulates nuclear genes encoding mitochondrial fatty acid oxidation enzymes
CPT-1 and MCAD.?® CPT-1 locates on the outer mitochondrial membrane and is a
key rate-limiting enzyme of long-chain fatty acid B-oxidation while MCAD is a key
enzyme in the first step of medium-chain fatty acid p-oxidation. We conclude that
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ACNSs can improve impairment of mitochondrial B-oxidation in NASH induced by the
MCD diet, which further counteracts hepatocyte injury resulting from lipid
accumulation by promoting TG clearance.

In line with existing research illustrating that ACNs are able to activate protein
expression of AMPK in vitro' and in vivo,'® we also found that ACNs could attenuate
the reduction of p-AMPK expression induced by the MCD diet (but not total AMPK;
Figure 6C). Moreover, emerging evidence showed that the activation of AMPK leads
to increased expression of the downstream molecule PGC-la,* which was
demonstrated to be a potent stimulator of mitochondrial biogenesis in liver, heart and
skeletal muscle by contributing to activation of NRF-1, NRF-2 and Tfam.** In the
present study, we showed that protein and gene expressions of PGC-1a and its target
genes were up-regulated by ACNs, which subsequently potentiated mitochondrial
biogenesis. These data suggest that the improvement of mitochondrial dysfunction
induced by ACNs treatment is attributed to increased phosphorylation of AMPK,
which subsequently increased expression of PGC-1a, rather than PGC-1f (Figure 6A
and C).

In summary, our study shows that ACNs ameliorate liver disease in steatohepatitis
progression and improve mitochondrial defects. Our previous study also showed that
anthocyanin cyanidin 3-O-B-glucoside could notably improve mitochondrial function
in high glucose-stressed hepatocytes.”> Considering previous studies reporting that
mitochondrial dysfunction takes precedence over insulin resistance and hepatic
steatosis and leads to the natural history of NAFLD***® and combining with our own
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results, we venture to conclude that administration of ACNs attenuated NASH due to
the improvement of mitochondrial dysfunction in mice fed a MCD diet. The possible
mechanism may involve activation of AMPK/PGC-1a signaling axis by ACNs, which
subsequently contributes to improvement of depletion of mitochondrial mtDNA and
mitochondrial biogenesis function, improves ECT activity and p-oxidation, and
eventually attenuates lipid accumulation-induced hepatocyte injury by enhancing TG
clearance. Due to limitations such as the animal model of NASH and lack of
inhibitors or blockers in our current study, further research is needed to investigate the
detailed molecular mechanisms and potential clinical applications of ACNs in
NAFLD.

ABBREVIATIONS USED

a-SMA, alpha smooth muscle actin; ACNs, anthocyanins; ALT, alanine
aminotransferase; AMPK, AMP-activated protein kinase; AST, aspartate
aminotransferase; Complex I, nicotinamide adenine dinucleotide dehydrogenase;
Complex IV, cytochrome ¢ oxidase; CPS-1, cabamoyl phosphate synthase 1; CPT-1,
carnitine palmitoyltransferase 1; DHE, dihydroethidium; ETC, electron transfer chain;
FAS, fatty acid synthesis; H&E, hematoxylin and eosin; HSC, hepatic stellate cell;
MCAD, medium chain acyl CoA dehydrogenase; MCD, methionine-choline-deficient
diet; MDA, malondialdehyde; MRC, mitochondrial respiratory chain; mtDNA,
mitochondrial DNA; NAFLD, nonalcoholic fatty liver disease; NAS, nonalcoholic
fatty liver disease activity scoring; NASH, nonalcoholic steatohepatitis; NRF-1/2,
nuclear respiratory factor-1/2; p-AMPK, phosphorylated AMP-activated protein
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kinase; PGC-10/B, peroxisome proliferator-activated receptor-gamma
coactivator-10/f; PPAR-a, peroxisome proliferator-activated receptor-a; ROS,
reactive oxygen species; TC, total cholesterol; Tfam, transcription factor A; TG,
triglyceride; VLDL, very low density lipoprotein-triglyceride
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Figure Captions

Figure 1. ACNs decreased lipid accumulation in mice fed the MCD diet. (A) Frozen
sections (5 pum thick) were stained with Oil Red O, which marked neutral lipid.
Representative micrographs (200 x magnification) are shown. (B-E) TG and TC
levels were measured from all frozen liver specimens and serum. Values are
expressed as mean + SD, n = 8. *P < 0.05 versus the control group; * P < 0.05

versus the MCD group.

Figure 2. ACNs ameliorated steatohepatitis induce by the MCD diet. (A)
Representative gross morphology images are shown. (B) Hepatic histological
analysis of H&E staining (200 x magnification). Inflammatory infiltration (black
arrow) and hepatocyte ballooning (red arrow) were observed in liver sections from
the MCD group which were improved in the ACNs-treated group. (C-E) Histological
NAS scores of liver tissues. Values are expressed as mean £ SD, n = 8. *P < 0.05

versus the control group; P < 0.05 versus the MCD group.

Figure 3. ACNs played an inhibitory role in progression of fibrosis in mice fed an
MCD diet. (A) Paraffin-embedded liver specimens were stained with Sirius Red and
observed by light microscopy. (B) Paraffin sections were immunoassayed for fibrosis
markers, o-SMA (black arrows), to assess hepatic stellate cells activation.
Representative photographs (200 x magnification) are shown. (C-D) Total RNA was
isolated from the livers and genes expression of collagen I and o-SMA were
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subjected to RT-PCR analysis, the control group was set to be 1. Values are
expressed as mean + SD, n = 8. *P < (.05 versus the control group; P < 0.05 versus

the MCD group.

Figure 4. ACNs decreased oxidative damage in NASH. (A) Frozen sections of livers
were stained with fluorescent probe DHE, showing red fluorescence in regions of
ROS production. Representative fluorescence micrographs (200 x magnification) are
shown. (B) Fluorescent densitometry of DHE staining was quantified by Imagel
software. (C) MDA content in livers. Values are expressed as mean + SD, n = 8. *P

< 0.05 versus the control group; *P < 0.05 versus the MCD group.

Figure 5. ACNs attenuated reduction of mitochondrial content and function in
NASH. (A) Mitochondrial genome copy number was shown as the ratio of mtDNA
to nDNA from purified liver DNA, which was determined by quantitative real-time
PCR. The control group was set to be 1. (B) Representative immunofluorescent
photomicrographs (200 x magnification) for mitochondrial marker CPS-1 (red
fluorescence) showed granular staining patterns in liver frozen sections. (C)
Fluorescent staining of CPS-1 per field was quantified by Image J software and
reported as mean integrated density. (D) Western blot analysis was performed to
semi-quantitatively assess expression levels of CPS-1 from liver homogenates. The
control group was set to be 1. Values are expressed as mean + SD, n = 8. *P < 0.05
versus the control group; *P < 0.05 versus the MCD group.
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Figure 6. ACNs stimulated mitochondrial biogenesis and improved mitochondrial
ETC defects as well as enhanced mitochondrial B-oxidation in NASH. (A-B)
Real-time PCR was applied to measure mRNA expression of PGC-1a and PGC-1
(A) and genes related to mitochondrial biogenesis (NRF-1, NRF-2 and Tfam) (B). (C)
Protein expression of p-AMPK, total AMPK, PGC-1a, PGC-1B and PPAR-a in
livers were measured by Western blot, quantified using densitometry and normalized
by GAPDH content. (D) Protein levels of Complex I and IV were examined by
Western blot. (E) Genes related to fatty acid oxidation (CPT-1, MCAD and PPAR-a)
and lipogenesis (FAS) were subjected to RT-PCR analysis. The control group was set
to be 1. Results are expressed as mean + SD, n = 6-8. *P < (.05 versus the control

group; *P < 0.05 versus the MCD group.
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Table 1: Animal characteristics and serum liver enzymes of mice in different study

groups”

Control MCD MCD + ACNs
Initial body weight (g) 25.12+1.30 25.09+1.26 25.35+1.20
Final body weight (g) 27.39+2.74 1693 +0.73*% 17.19 £ 0.42*
Liver weight (g) 0.89£0.13  0.54+0.06* 0.56 £0.10*
Liver to body weight ratio (%) 3.53+£0.62  3.20+0.20 3.40+0.34
Serum ALT level (U/L) 6.03+1.68 79.08 +36.54% 58.65+ 25.03%"
Serum AST level (U/L) 23.43+£1.66 49.48+3.17*  40.26+2.07%"

All values are mean = SD, n = 8. Statistical analysis of the data for multiple
comparisons was performed by ANOVA. *P < 0.05 versus the control group; “P <

0.05 versus the MCD group.
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Figure 1. ACNs decreased lipid accumulation in mice fed the MCD diet. (A) Frozen sections (5 um thick) were
stained with Oil Red O, which marked neutral lipid. Representative micrographs (200 x magnification) are
shown. (B-E) TG and TC levels were measured from all frozen liver specimens and serum. Values are
expressed as mean + SD, n = 8. *P < 0.05 versus the control group; # P < 0.05 versus the MCD group.
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Figure 2. ACNs ameliorated steatohepatitis induce by the MCD diet. (A) Representative gross morphology

images are shown. (B) Hepatic histological analysis of H&E staining (200 x magnification). Inflammatory

infiltration (black arrow) and hepatocyte ballooning (red arrow) were observed in liver sections from the
MCD group which were improved in the ACNs-treated group. (C-E) Histological NAS scores of liver tissues.
Values are expressed as mean £ SD, n = 8. *P < 0.05 versus the control group; #P < 0.05 versus the MCD
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Figure 5. ACNs attenuated reduction of mitochondrial content and function in NASH. (A) Mitochondrial
genome copy number was shown as the ratio of mtDNA to nDNA from purified liver DNA, which was
determined by quantitative real-time PCR. The control group was set to be 1. (B) Representative
immunofluorescent photomicrographs (200 x magnification) for mitochondrial marker CPS-1 (red
fluorescence) showed granular staining patterns in liver frozen sections. (C) Fluorescent staining of CPS-1
per field was quantified by Image ] software and reported as mean integrated density. (D) Western blot
analysis was performed to semi-quantitatively assess expression levels of CPS-1 from liver homogenates.
The control group was set to be 1. Values are expressed as mean + SD, n = 8. *P < 0.05 versus the control
group; #P < 0.05 versus the MCD group.
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Figure 6. ACNs stimulated mitochondrial biogenesis and improved mitochondrial ETC defects as well as
enhanced mitochondrial B-oxidation in NASH. (A-B) Real-time PCR was applied to measure mRNA expression
of PGC-1a and PGC-1f (A) and genes related to mitochondrial biogenesis (NRF-1, NRF-2 and Tfam) (B). (C)
Protein expression of p-AMPK, total AMPK, PGC-1a, PGC-1 and PPAR-ain livers were measured by Western

blot, quantified using densitometry and normalized by GAPDH content. (D) Protein levels of Complex I and
IV were examined by Western blot. (E) Genes related to fatty acid oxidation (CPT-1, MCAD and PPAR-a) and
lipogenesis (FAS) were subjected to RT-PCR analysis. The control group was set to be 1. Results are
expressed as mean = SD, n = 6-8. *P < 0.05 versus the control group; #P < 0.05 versus the MCD group.
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